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Abstract

This paper presents a linear stability analysis for the Rayleigh–B�eenard convection in a finite-length, vertical cylinder

with a rotating magnetic field. The vertical wall of the cylinder is adiabatic, and the planar top and bottom walls are

isothermal with a higher temperature at the bottom. The stabilizing effects of the rotating magnetic field are studied for

four values of the Prandtl number. Results for one Prandtl number are compared to previously published experimental

results.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

During the growth of a single crystal from a body of

a molten semiconductor or melt, hydrodynamic insta-

bilities often lead to periodic melt motions. The resultant

fluctuations in the convective heat transfer from the melt

to the crystal lead to fluctuations in the rate of solidifi-

cation. A fluctuating solidification rate produces more

crystal defects and produces spatial oscillations of the

dopant concentration in the crystal, called striations.

Recent experiments have shown that the application of a

rotating magnetic field (RMF) to the melt during crystal

growth can dramatically improve the quality of the

crystal. An RMF can have many beneficial effects, such

as modifying the convective heat transfer to produce a

more planar crystal-melt interface and stirring the melt

to produce a more radially uniform dopant concentra-

tion in the crystal. This paper is focused on the use of an

RMF to eliminate a hydrodynamic instability. Dold and

Benz [1] presented an excellent review of the benefits of

RMF’s in semiconductor crystal growth.

An RMF is produced by connecting the successive

phases of a multiphase AC power source to inductors at
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equally spaced azimuthal positions around the cylin-

drical melt. A ‘‘high-frequency’’ RMF induces electric

currents in the electrically conducting melt, and these

currents produce an ‘‘induced’’ magnetic field which

partially cancels the ‘‘applied’’ magnetic field due to the

external inductors. The definition of high frequency

depends on the electrical conductivity r of the melt and

the radius R of the melt region. For virtually all molten

semiconductors with R6 10 cm, 50 or 60 Hz is a ‘‘low

frequency’’, and the induced magnetic field is negligible

[2–4]. While higher frequencies are certainly possible,

modeling indicates that they lead to undesirable insta-

bilities [5].

For most crystal-growth processes, the inductors are

designed to produce a spatially uniform, transverse

magnetic field which rotates at a constant angular

velocity x around the vertical centerline of the melt re-

gion. While the induced electric currents in the melt are

too small to produce a significant induced magnetic

field, they are large enough to interact with the RMF to

produce a significant electromagnetic body force on the

melt. This body force consists of a steady, axisymmetric,

azimuthal force and a periodic, three-dimensional force

which varies as cosð2hÞ and which has a frequency

of 2x, where r, h, z are cylindrical coordinates with the

z axis along the vertical centerline of the melt region.

If the frequency is too low, e.g., 0.1 Hz, then the

melt can respond to the three-dimensional, periodic,
ed.
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Nomenclature

b aspect ratio

B magnetic flux density

fh body force due to RMF

g acceleration of gravity

Jk Bessel function of kth order

m azimuthal wave number

p pressure

Pr Prandtl number

r radial coordinate

R radius of cylinder

Ra Rayleigh number

t time

T temperature

Tm magnetic Taylor number

v velocity

z axial coordinate

Greek symbols

b volumetric expansion coefficient

e small parameter for perturbation

h azimuthal coordinate

j thermal diffusivity

k complex eigenvalue

kN roots of kNJ0ðkN Þ � J1ðkN Þ ¼ 0

m kinematic viscosity

q density

r electrical conductivity

U azimuthal phase shift

w stream function for meridional flow

x angular velocity of RMF

X0 angular velocity of flow
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nonaxisymmetric component of the RMF body force,

leading to an undesirable melt motion [6]. For a fre-

quency of 50 or 60 Hz, the melt motion driven by the

three-dimensional, periodic, nonaxisymmetric compo-

nent of the RMF body force is limited by inertial effects

and is negligible compared to the melt motion driven by

the steady, axisymmetric, azimuthal component of the

RMF body force [7–9]. The assumptions needed for the

neglect of the three-dimensional, periodic, nonaxisym-

metric component of the RMF body force also indicate

that the steady, axisymmetric, azimuthal component is

independent of the melt motion [9].

Volz and Mazuruk [10] recently presented an exper-

imental study of the influence of a rotating magnetic

field on the Rayleigh–B�eenard instability in a vertical

cylinder with a well-insulated vertical wall, with iso-

thermal planar top and bottom walls with a hotter

bottom, and with its height equal to its diameter. The

liquid gallium in their experiments has a Prandtl number

Pr ¼ m=j ¼ 0:0285 and other thermophysical properties

which are close to those of many molten semiconduc-

tors, where m and j are the kinematic viscosity and

thermal diffusivity of the melt. Without an RMF, the

Rayleigh–B�eenard base-state consists of a stagnant fluid

with a linear temperature variation from the hot bottom

to the cold top. In this case, the first instability as the

temperature difference is increased involves the transi-

tion to a steady axisymmetric or nonaxisymmetric flow.

If the cylinder is rotated about its vertical centerline,

the base-state consists of a rigid body rotation with the

cylinder and a linear temperature variation, with the

initial transition to an axisymmetric or nonaxisymmetric

flow which is steady in a reference frame rotating with
the cylinder [11]. For a fixed, finite-length cylinder with a

rotating magnetic field, the base-state consists of (1) the

azimuthal velocity vh0ðr; zÞ driven by the RMF, (2) a

meridional circulation which consists of radial and axial

velocity components and which is driven by the axial

variation of the centrifugal force due to vh0, and (3) a

temperature which deviates from a linear variation due

to the convective heat transfer associated with the base-

state meridional circulation. Here we only treat the first

transition from a steady, axisymmetric velocity and

temperature to a periodic axisymmetric or nonaxisym-

metric velocity and temperature. Volz and Mazuruk [12]

also presented a linear stability analysis for an infinitely

long vertical cylinder with a base-state consisting of a

uniform temperature gradient and an azimuthal velocity

due to an RMF.
2. Problem formulation

With the Boussinesq approximation, the dimension-

less governing equations are

ov

ot
þ ðv � rÞv ¼ �rp þ Tmfhðr; zÞĥhþ

Ra
Pr

T ẑzþr2v; ð1Þ

r � v ¼ 0; ð2Þ

oT
ot

þ v � rT ¼ 1

Pr
r2T ; ð3Þ

where (1) the coordinates r and z are normalized by R,
(2) t is the time normalized by R2=m, (3) v the liquid

velocity normalized by m=R, (4) p the deviation of the

pressure from the hydrostatic pressure for a uniform
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density q, normalized by qm2=R2, (5) T the deviation of

the temperature from 0:5ðTh þ TcÞ, normalized by

ðDT Þ ¼ Th � Tc, while Th and Tc are the uniform tem-

peratures of the hot bottom wall and cold top wall,

respectively, and (6) r̂r, ĥh, ẑz are unit vectors for the

cylindrical coordinates. In addition to Pr, the dimen-

sionless parameters are the magnetic Taylor number

Tm ¼ rxB2R4

2qm2
ð4Þ

and the Rayleigh number

Ra ¼ gbðDT ÞR3

mj
; ð5Þ

where B is the magnetic flux density of the RMF,

g ¼ 9:81 m/s2, and b is the volumetric expansion coef-

ficient of the liquid. The dimensionless, steady, axisym-

metric, azimuthal body force fh produced by the RMF

depends on the electrical conductivity of the top and

bottom walls. If the top and bottom walls are perfect

electrical conductors, then fh ¼ r [7]. In the experiments

of Volz and Mazuruk [10], the top and bottom walls

were copper disks, and a thin oxide layer formed at each

copper–gallium interface. These oxide layers are elec-

trically insulating. With the origin of the coordinate

system at the middle of the liquid, the solution for the

RMF body force for electrically insulating top and

bottom walls is [9]

fh ¼ r � 2
X1
N¼1

J1ðkN rÞ coshðkN zÞ
ðk2N � 1ÞJ1ðkN Þ coshðkNbÞ

; ð6Þ

where Jk is the Bessel function of the first kind and kth
order, kN are the roots of kNJ0ðkN Þ � J1ðkN Þ ¼ 0, and b is
the ratio of the axial distance between the top and

bottom walls of the cylinder to its diameter. The

boundary conditions are

v ¼ 0;
oT
or

¼ 0; at r ¼ 1; ð7Þ

v ¼ 0; T ¼ �0:5; at z ¼ �b: ð8Þ

For the linear stability analysis, we introduce the

form

vr ¼ vr0ðr; zÞ þ e Real½vr1ðr; zÞ expðkt � imhÞ� ð9Þ

for each of the variables vr, vh, vz, p, T . Here the sub-

script 0 denotes the variables in the steady, axisymmetric

base-flow, the subscript 1 denotes the complex modal

functions, such as vr1 ¼ vr1R þ ivr1I, for the small OðeÞ
perturbation in the linear stability analysis, k ¼ kR þ ikI
is the complex eigenvalue, and m is the real, integer,

azimuthal wave number. The base-flow and linear-

perturbation equations neglect OðeÞ and Oðe2Þ terms,

respectively.
For the steady, axisymmetric base-flow, we introduce

a stream function w0ðr; zÞ for the meridional circulation,

where

vr0 ¼
1

r
ow0

oz
; vz0 ¼ � 1

r
ow0

or
; ð10Þ

and we eliminate p0 by cross-differentiating the r and z
components of the momentum equation (1). Thus the

base-flow is governed by a fourth-order equation for w0

and two second-order equations governing vh0 and T0.
Since vh0 is an even function of z, while w0 and T0 are odd
functions of z, we need only treat 06 z6 b. We represent

each base-flow variable by a sum of the Chebyshev

polynomials in r and z. We insure that the representation

of each variable has the correct Taylor series in r. For
example, the Taylor series for w0 has only even powers

of r, starting with r2. We apply each equation and

boundary condition at the Gauss–Lobatto collocation

points in r and z, including r ¼ 0 and z ¼ 0. For each

equation at r ¼ 0, we identify the leading power of r in
the Taylor series of that equation, we divide by this

power of r, and we take the limit as r ! 0. For an

equation which is odd in z, we apply its z-derivative at

z ¼ 0. For each combination of the parameters b, Pr, Tm,
Ra, the nonlinear base-flow equations are solved with an

iterative Newton–Raphson scheme.

The complex modal functions vr1, vh1, vz1, p1, T1 are

governed by a set of linear, homogeneous equations and

boundary conditions which involve coefficients given by

the base-flow variables and their first derivatives and

which include the complex eigenvalue k. Since the base-
flow has a symmetry in z, we need only treat 06 z6 b as

long as we consider both symmetric and antisymmetric

modes. A symmetric mode has the same symmetries as

the base-flow: vr1, vh1, p1 are even functions of z, and vz1,
T1 are odd functions of z. For an antisymmetric mode:

vr1, vh1, p1 are odd functions of z, and vz1, T1 are even

functions of z. In addition, different approaches are

appropriate for an axisymmetric perturbation with

m ¼ 0 and for a nonaxisymmetric perturbation with

mP 1. For m ¼ 0, we introduce a stream function for

the perturbation meridional circulation, corresponding

to Eq. (10) with the subscript 0 replaced by the subscript

1. Then the three basic variables are w1, vh1, T1. For

mP 1, we use the continuity Eq. (2) to eliminate vh1 and
then we use the h component of the momentum equation

(1) to eliminate p1, so that we have fourth-order equa-

tions governing vr1, vz1 and a second-order equation

governing T1. We have developed four codes for the

symmetric and antisymmetric modes with m ¼ 0 and

mP 1.

Each perturbation variable is represented as a sum of

Chebyshev polynomials in r and z, and again we insure

that each representation has the correct Taylor series in

r. For example, the Taylor series for vr1 for mP 1 in-

cludes only the powers rðm�1Þ; rðmþ1Þ; rðmþ3Þ; rðmþ5Þ; . . . The
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perturbation equations are also applied at the Gauss–

Lobatto collocation points in r and z, including r ¼ 0

and z ¼ 0. Again the leading term in the Taylor series

expansion of each equation is applied at r ¼ 0, and the

derivatives of equations which are odd in z are applied at

z ¼ 0.

The resultant linear matrix eigenvalue problem was

solved with two methods. First we obtained approxi-

mate values for all the eigenvalues with a relatively small

number of collocation points for the perturbation

equations using the FORTRAN subroutines in the EI-

SPACK library [13]. Then we used the inverse iteration

method [14] with more collocation points in both the r
and z directions in order to obtain much more accurate

eigenvalues and eigen vectors for all potentially critical

modes.

For each set of values for b, Pr, Tm, Ra, we first used
the Newton–Raphson scheme to determine the steady,

axisymmetric base-flow, and then we found the eigen-

values for the symmetric and antisymmetric modes for

m ¼ 0; 1; 2; 3; 4; . . . For each set of values of b, Pr, Tm, we
increased Ra until one eigenvalue for one mode had

kR ¼ 0, while all the other eigenvalues for this mode and

for all the other modes had kR < 0.
Fig. 1. Critical Rayleigh number versus magnetic Taylor

number for gallium (Pr ¼ 0:0286). The solid lines are the results

of the linear stability analysis for the antisymmetric m ¼ 1, 0

and 2 modes. The X’s and I’s are the experimental results of

Volz and Mazuruk [10] for transitions from steady flows to

periodic flows with azimuthal temperature variations corre-

sponding to the m ¼ 1 and 2 modes, respectively.
3. Results

We only present results for b ¼ 1 because this is the

aspect ratio for the experiments of Volz and Mazuruk

[10]. Grid refinement studies indicated that 31 and 47

collocation points in 06 r6 1 and 06 z6 1, respectively,

provided accurate results for all the cases considered

here. Further validation of the numerical accuracy was

provided by comparison with previous results for two

special cases. For the Rayleigh–B�eenard instability

without an RMF (Tm ¼ 0), the initial transition from a

stagnant fluid to a steady convection (kI ¼ 0) occurs at a

critical value of the Rayleigh number, Racr, which is

independent of Pr. For b ¼ 1, the critical mode is the

antisymmetric m ¼ 1 mode. Using linear stability ana-

lyses, Buell and Catton [11] found that Racr ¼ 471, while

Touihri et al. [15] found that Racr ¼ 462. Using a

numerical time integration of the full three-dimensional

Navier–Stokes and energy equations, Neumann [16]

found that Racr ¼ 451. Our codes give Racr ¼ 471. For

an isothermal liquid (Ra ¼ 0) in a cylinder with an

RMF, Grants and Gerbeth [17] found a transition from

a steady, axisymmetric flow to a periodic, nonaxisym-

metric flow at Tmcr ¼ 123; 200 for b ¼ 1. The critical

mode is the symmetric m ¼ 2 mode with kI ¼ 160:42.
Our codes give Tmcr ¼ 123; 168 with kI ¼ 160:422.

There are three possible sources of instability: the

Rayleigh–B�eenard instability due to the temperature

gradient, a centrifugal (G€oortler) instability near the

vertical cylinder wall, and a critical-layer instability in
the B€oodewadt layers adjacent to the top and bottom

walls. The G€oortler and B€oodewadt instability mechanisms

are the same in the problem of an isothermal liquid in a

cylinder with an RMF, which was treated by Grants and

Gerbeth [17]. They showed that the first instability arises

from a coupling of the G€oortler and B€oodewadt instability
mechanisms in the regions near the corners at r ¼ 1,

z ¼ �b. They found that this coupled instability occurs

at Tmcr ¼ 123; 200 for b ¼ 1, and they thoroughly docu-

mented their numerical accuracy. Here we consider

Tmcr 6 70; 000, so we are only considering the modifica-

tion of the Rayleigh–B�eenard instability, and we are well

below the value of Tm where the G€oortler or B€oodewadt
instability mechanisms would enter.

For all the results presented here, the critical insta-

bility involves an antisymmetric mode with m ¼ 0, 1, 2

or 3. For gallium with Pr ¼ 0:0286, Racr is plotted as a

function of Tm in Fig. 1. The solid lines are the values of

Racr from the linear stability analysis for the m ¼ 1, 0

and 2 antisymmetric modes. As Tm is increased from 0,

Racr for the m ¼ 1 mode increases from 471.0 to 5016.0
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at Tm ¼ 33; 000, where the m ¼ 0 mode becomes the first

instability. In addition to the Racr for the critical m ¼ 0

mode, we continue to plot the Racr for the m ¼ 1 mode

until it crosses the neutral stability curve for the m ¼ 2

mode at Tm ¼ 39; 630 and Racr ¼ 6325. At Tm ¼ 70; 000,
Racr ¼ 8381:4 and 9317.7 for the m ¼ 0 and 2 modes,

respectively.

In the experiments of Volz and Mazuruk [10], the

temperature difference between the top and bottom

copper disks was increased in small increments for each

value of Tm. Each temperature difference was held con-

stant for a long period of time before the temperatures at

four equally spaced azimuthal positions were measured

in order to determine whether the flow was steady or

periodic. For Tm < 70; 000, there were transitions from

steady flow to two different periodic flows, with the

azimuthal temperature variations corresponding to the

m ¼ 1 and 2 modes. The X’s in Fig. 1 denote the last

values of Ra before transition to the m ¼ 1 temperature

pattern as Ra was increased. The agreement with the

linear stability predictions for the m ¼ 1 mode is excel-

lent. In these experiments, the incremental increases in

(DT ) were small, but they corresponded to significant

changes in Ra since an increase of 1 K corresponds to an

increase of 484 in Ra for gallium with R ¼ 12 mm. Thus

the first values of Ra where periodic flow occurred were

above the values marked by the X’s in Fig. 1. For

example, for Tm ¼ 29; 455, the X marking the last Ra for

steady flow lies at 4113.0, while the incremental tem-

perature increase corresponded to roughly an increase of

250 in Ra. Therefore the first observed periodic flow

occurred at roughly Ra ¼ 4363, which lies very close to

the solid line.

The I’s in Fig. 1 denote the experimental results for

the transitions between steady axisymmetric flows and

periodic flows with an m ¼ 2 azimuthal temperature

variation. In the experiments of Volz and Mazuruk [10],

for each value of Tm, Ra was first increased well beyond

the transition from steady to periodic flow and then was

decreased until the flow again became steady. The bot-

tom of each I in Fig. 1 denotes the last value of Ra where

steady flow was observed when Ra was increasing, and

the top of each I denotes the last value of Ra where

periodic flow was observed when Ra was decreasing.

Clearly the experimental results for the transitions be-

tween steady and periodic flow with an m ¼ 2 azimuthal

temperature pattern are below the linear stability results

for both the m ¼ 0 and 2 modes. There are two char-

acteristics of the linear stability results which support a

hypothesis about the physical reason for the differences

between the I’s and the solid lines in Fig. 1. First, for the

Ra ¼ 5000–5500 for the I’s, the dimensionless decay

rates (�kR) for both the m ¼ 0 and 2 modes are small

compared to the dimensionless frequencies kI. This

indicates that a finite-amplitude disturbance would

oscillate many times before decaying. Second the value
of kI for the m ¼ 2 mode is close to twice the value of kI
for the m ¼ 0 mode. The ratio of these kI’s varies from
2.12 at Tm ¼ 42; 000 to 2.14 at Tm ¼ 70; 000. A ratio of

two means that the period for one complete revolution

of the m ¼ 2 perturbation pattern is equal to the period

for the oscillatory axisymmetric perturbation. These two

characteristics lead to the hypothesis that a nonlinear

coupling between the m ¼ 0 and 2 periodic modes may

lead to a transition from steady to periodic flow at a

value of Ra below those predicted by the linear stability

analysis for either mode. Finite-amplitude, axisymmetric

(m ¼ 0), antisymmetric (in z) perturbations would occur

in any actual flow. While the linear stability analysis

indicates that such a perturbation eventually decays for

the values of Ra for the I’s in Fig. 1, we hypothesize that

such a perturbation could persist long enough to alter

the steady base-flow, leading to a lower value of Racr for
the m ¼ 2 mode. With the close match of the natural

frequencies of the m ¼ 0 and 2 modes, a periodic, axi-

symmetric, antisymmetric perturbation would certainly

tend to drive the m ¼ 2 mode. Of course this is only a

hypothesis since such a nonlinear modal coupling can-

not be treated with our linear stability analysis.

The experimentally measured frequencies for the

periodic temperature oscillations at the top of each I in

Fig. 1 are reasonably close to the frequencies predicted

by the linear stability analysis for the neutral stability of

the m ¼ 2 mode at the same value of Tm. For example,

for Tm ¼ 40; 927, kI ¼ 671:65 for a neutrally stable

m ¼ 2 mode, while the experimental frequency is

equivalent to kI ¼ 616:3 or 8.2% less. There are many

possible sources of a finite-amplitude, axisymmetric,

antisymmetric perturbation which could alter the base-

flow enough to trigger the m ¼ 2 modal transition. One

candidate is the convective heat transfer due to the base-

flow meridional circulation produced by the RMF. Even

for Pr ¼ 0:0286, this convective heat transfer leads to a

significant radial variation of the axial heat flux at either

the top or bottom. For example, for Tm ¼ 60; 000, the
axial heat flux at each interface at r ¼ 1 is 62% larger

than that at r ¼ 0. For the idealized conditions of the

model, the effects would be entirely symmetric in z.
However, a small deviation from the idealized condi-

tions could lead to a finite-amplitude, axisymmetric,

antisymmetric perturbation. For example, if the thermal

resistance of the oxide layer at the hotter copper–gallium

interface were larger than that at the colder interface, the

differences in temperature drops across these oxide lay-

ers would lead to an antisymmetric perturbation.

Volz and Mazuruk [12] presented a linear stability

analysis for an infinitely long cylinder with a base-state

consisting of a uniform axial temperature gradient and a

purely azimuthal velocity driven by an RMF. Their

results for Pr ¼ 0:02 are qualitatively similar to the lines

for m ¼ 1 and 0 in Fig. 1. For the infinite cylinder with

Tm ¼ 0, Racr for the m ¼ 1 mode is below that for the
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m ¼ 0 mode. As Tm is increased from 0, the azimuthal

velocity stabilizes the m ¼ 1 mode, increasing its Racr,
but it has no effect on the m ¼ 0 mode. Thus the roughly

parabolically increasing Racr for the m ¼ 1 mode crosses

the constant Racr for the m ¼ 0 mode, leading to a modal

switch similar to that in Fig. 1 at Tm ¼ 33; 000.
The predictions of our linear stability analysis for

Racr for Pr ¼ 0:001, 0.0286, 0.2 and 1.0 are plotted as

functions of Tm in Fig. 2. For Tm > 0, there is a strong

dependence of Racr on Pr. First we discuss the differences
in modal changes for the four values of Pr. For

Pr ¼ 0:001, the critical mode is the antisymmetric m ¼ 1

mode with Racr increasing from 471.0 to 2504.2 for

Tm ¼ 70; 000. The neutral stability curve for the anti-

symmetric m ¼ 0 mode is approaching that for m ¼ 1,

but it does not cross the latter, even by Tm ¼ 100; 000.
The neutral stability curves for m ¼ 2 and 3 are con-

siderably higher. As already discussed for Fig. 1, for

Pr ¼ 0:0286, there is a switch from the m ¼ 1 mode to

the m ¼ 0 mode at Tm ¼ 33; 000 and Racr ¼ 5016, while

the neutral stability curve for m ¼ 2 is above and nearly

parallel to that for m ¼ 0. For some value of Pr between
0.0286 and 0.2, the neutral stability curve for m ¼ 2

moves below that for m ¼ 0. For Pr ¼ 0:2, there is a

switch from the m ¼ 1 mode to the m ¼ 2 mode at

Tm ¼ 9300 and Racr ¼ 4710, and there is another switch

from the m ¼ 2 mode to the m ¼ 3 mode at Tm ¼ 45; 000
and Racr ¼ 21; 120. For Pr ¼ 0:2, Racr ¼ 30; 170 at

Tm ¼ 70; 000, while the neutral stability curve for m ¼ 0
Fig. 2. Linear stability predictions of Racr versus Tm for

Pr ¼ 0:001, 0.0286, 0.2 and 1.0.
is above those for m ¼ 1, 2 and 3 in Fig. 2. For Pr ¼ 1:0,
we stopped the calculations at Racr ¼ 30; 000 and

Tm ¼ 32; 000, and the critical mode is the m ¼ 1 mode

for this entire range. The neutral stability curve for the

m ¼ 2 mode comes very close to that for the critical

m ¼ 1 mode near Tm ¼ 5500 and Racr ¼ 6015:7, but as
Tm is increased further, the slope of the m ¼ 2 curve

increases so that this curve does not cross the m ¼ 1

curve. Similarly, the m ¼ 3 neutral stability curve comes

very close to the m ¼ 1 curve near Tm ¼ 10; 000 and

Racr ¼ 10; 762, but then it too rises more quickly and

does not cross the m ¼ 1 curve. For Pr ¼ 1:0, the neutral
stability curve for the m ¼ 0 mode is well above that for

the m ¼ 1 mode. Clearly there is some change in the

physics of the instability between (1) Pr ¼ 0:2 where the

m ¼ 2 curve crosses the m ¼ 1 curve and then the m ¼ 3

curve crosses the m ¼ 2 curve and (2) Pr ¼ 1:0 where the

m ¼ 2 and 3 curves come close to the m ¼ 1 curve but do

not cross it, leaving m ¼ 1 as the critical mode for the

entire range considered here. Where the m ¼ 2 or 3 curve

comes close to the m ¼ 1 curve for Pr ¼ 1:0, the slow

decay of both modes may mean that a nonlinear modal

coupling leads to an m ¼ 2 or 3 transition which cannot

be predicted by the linear stability analysis. For

Tm ¼ 5500 and Ra ¼ 6015:7, k ¼ 58:577i for the m ¼ 1

mode and k ¼ �0:453þ 201:54i for the m ¼ 2 mode.

For Tm ¼ 10; 000 and Ra ¼ 10; 762, k ¼ 92:29i for the

m ¼ 1 mode and k ¼ �2:736þ 488:98i for the m ¼ 3

mode. At both points, the natural frequencies of the two

modes are not well matched.

Some physical insights into the stabilizing effects of

an RMF and into the dependence of Racr on Pr are

provided by the characteristics of the base-state and of

the perturbation variables for the critical mode. First we

consider how the base-state differs from a simple

superposition of the velocities driven by the RMF in an

isothermal fluid, i.e., the same Tm with Ra ¼ 0, and the

pure-conduction horizontal isotherms for a stagnant

fluid, i.e., the same Ra with Tm ¼ 0. The primary differ-

ence is the change in the isotherms due to the meridional

convection driven by the RMF. For Pr ¼ 0:001, con-
vective heat transfer is neglible compared to conduction,

so that the isotherms remain horizontal and equally

spaced for all Tm < 70; 000. For Pr ¼ 0:0286, there is a

moderate deflection of the isotherms, and we have

already noted that the axial heat flux at the liquid–solid

interfaces becomes skewed toward r ¼ 1. For Pr ¼ 0:2
and 1.0, the changes in the isotherms are much more

significant. For example, the base-state isotherms for

Pr ¼ 1:0, Tm ¼ 26; 000 and Racr ¼ 25; 040:9 are plotted

in Fig. 3. Clearly this temperature distribution is very

different from the pure-conduction temperature for the

Rayleigh–B�eenard problem without an RMF. The

change in the base-state temperature distribution is one

of the reasons that Racr increases as Pr is increased for a

given value of Tm.



Fig. 3. Base-state isotherms for Pr ¼ 1:0, Tm ¼ 26; 000 and

Racr ¼ 25; 040:9: T0 ¼ �0:05k, for k ¼ 1 to 9.
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The non-zero values of oT0=or created by the RMF

should produce a buoyant convection which augments

the meridional circulation driven by the RMF, but this

change turns out to be small. For example, for the

critical flows for Tm ¼ 8000, the maximum values of the

base-flow stream function are 3.767, 3.796, 4.04 and

3.959 for Pr ¼ 0:001, 0.0286, 0.2 and 1.0, respectively,

while the corresponding values for Tm ¼ 20; 000 are

6.365, 6.455, 6.851 and 6.56. Davidson [8] showed that

the maximum value of the azimuthal velocity driven by

an RMF is determined by the balance between (1) the

decrease of angular momentum due to viscous shear

stresses as a fluid particle moves vertically and then

radially inward inside the boundary layers adjacent to

the fixed walls, and (2) the increase of angular

momentum due to the RMF as the fluid particle

crosses the inviscid central region from the top or

bottom boundary layer to the vertical-wall boundary

layer. Therefore an increase in the meridional circula-

tion due to the buoyant force associated with the non-

zero value of oT0=or should reduce the time a particle

spends crossing the inviscid central region and thus

reduce the angular momentum it gains during this

crossing. For Tm ¼ 8000, the maximum values of the

base-flow azimuthal velocity are 114.34, 113.91, 110.31

and 110.44 for Pr ¼ 0:001, 0.0286, 0.2 and 1.0,

respectively, while the corresponding values for

Tm ¼ 20; 000 are 230.08, 228.21, 220.64 and 223.9. In

summary, for Pr ¼ 0:2 and 1.0, the base-state temper-

ature distribution is significantly different from that for

pure conduction, but the base-flow velocities are quite

close to those for an isothermal fluid with the same

RMF for all four values of Pr.
For mP 1, the perturbation variables for the critical

mode have a constant spatial pattern which rotates in

the +h direction with the angular velocity kI=m. A key

question is whether (1) this rotation of a constant pat-

tern simply represents convection with some average of

the base-flow azimuthal velocity or (2) there is some

physical mechanism causing the perturbation pattern to

rotate faster or slower than the base-flow azimuthal

motion. The angular velocity of the base-flow, vh0=r, is
not uniform over the cross-section. However, there is

always a region of nearly rigid-body rotation near the

origin, and its angular velocity is

X0 ¼ lim
r!0

vh0ðr; 0Þ
r

� �
: ð11Þ

For small values of Tm, the region of rigid-body

rotation is small, but for Tm > 10; 000, it occupies

roughly 06 r6 0:7, jzj6 0:5. For these larger values of

Tm, as r increases from 0.7 to 1.0, the base-flow angular

velocity decreases from X0 to 0, and as jzj increases from
0.5 to 1.0, the base-flow angular velocity first increases

to roughly 1:5X0 and then decreases to 0. Thus the

average base-flow angular velocity is close to X0. The

values of kI for the critical m ¼ 1 mode for Pr ¼ 0:001,
0.0286, 0.2 and 1.0, as well as the value of X0, are plotted

as a function of Tm in Fig. 4. As noted already, the

values of vh0 are very nearly independent of Pr, so this is

also true for X0. For all four values of Pr, kI is signifi-

cantly less than X0, so that some physical mechanism is

causing the perturbation to rotate slower than the

average base-flow angular velocity. There is clearly a

competition between convection and conduction of the

perturbation temperature. When conduction strongly

dominates for Pr ¼ 0:001, kI for the m ¼ 1 mode is very

small, and the instability is nearly stationary. It appears

that kI for the m ¼ 1 mode goes to zero as Pr ! 0 for all

values of Tm. As Pr is increased, and the ratio of con-

vection of T1 to its conduction increases, kI for the m ¼ 1

mode increases. For gallium, with Pr ¼ 0:0286, kI is still
far below X0. Even for Pr ¼ 1:0, kI for the m ¼ 1 mode is

still only slightly larger than 0.5X0.

For the m ¼ 2 and 3 modes, (kI=m) is closer to X0

than it is for the m ¼ 1 mode. For Pr ¼ 0:0286 and

Tm ¼ 39; 630, ðkI=mÞ ¼ 93 and 328 for the m ¼ 1 and 2

modes, respectively, while X0 ¼ 467:5. For Pr ¼ 0:2,
(kI=m) is very close to 0.75X0 over the entire range of Tm
where the m ¼ 2 mode is critical, while (kI=m) is very

close to 0.9 X0 over the entire range of Tm where the

m ¼ 3 mode is critical. Therefore the angular velocity of

the m ¼ 1 mode is much less than that of the base-flow

azimuthal motion with a strong dependence on Pr, while
the m ¼ 2 and 3 modes have angular velocities which are

still less than X0, but are much closer to X0.

Some physical insights into the results in Fig. 2 are

provided by the difference between the azimuthal phase



Fig. 5. Difference between the azimuthal phase shifts for the

perturbation temperature and the axial perturbation velocity at

z ¼ 0 for the critical m ¼ 1 mode, for Pr ¼ 0:0286 and for

Tm ¼ 1000, 8000, 14,000, 20,000 and 30,000.

Fig. 4. Dimensionless frequency kI for the critical m ¼ 1 mode

versus Tm for Pr ¼ 0:001, 0.0286, 0.2 and 1.0. Also the angular

velocity X0 of the base-flow rigid-body rotation near the origin.
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shifts for the perturbation temperature and for the ver-

tical perturbation velocity for mP 1. If we use a refer-

ence frame which is rotating around the z axis with the

angular velocity kI=m, then the perturbation variables

are independent of t for mP 1. In this rotating reference

frame, the azimuthal coordinate is H ¼ h� kIt=m and

the base-flow azimuthal velocity is Vh0 ¼ vh0 � kIr=m.
Eq. (9) for the temperature can be rewritten as

T ¼ T0ðr; zÞ þ eT 1ðr; zÞ cosfm½H� UTðr; zÞ�g; ð12Þ

where

T 1 ¼ ðT 2
1R þ T 2

1IÞ
1=2 ð13Þ

and

UT ¼ 1

m
arctan

T1I
T1R

� �
ð14Þ

are the amplitude and azimuthal phase shift for the

perturbation temperature. At a given point ðr; zÞ for

m ¼ 1, the maximum perturbation temperature occurs at
H ¼ UT, the minimum occurs at H ¼ UT þ p, and the

zeros occur at H ¼ UT � p=2. The U for each pertur-

bation variable can vary considerably with ðr; zÞ due to

the azimuthal convection with Vh0ðr; zÞ which varies

from positive values in the central region to negative

values near the walls. Here we focus on the difference

between the azimuthal phase shifts for the perturbation

temperature and for the vertical perturbation velocity,

DU ¼ UT � Uvz; ð15Þ

where Uvz is given by Eq. (14) with T1I and T1R replaced

by vz1I and vz1R, respectively. For Pr ¼ 0:0286 and m ¼ 1,

the values of DU at z ¼ 0 for Tm ¼ 1000, 8000, 14,000,

20,000 and 30,000 are plotted as functions of r in Fig. 5.

For Tm ¼ 0, DU ¼ 0 everywhere and for all values of Pr.
For Tm ¼ 1000 and Pr ¼ 0:0286, the variation of DU
with r arises because there is more convection of vz1 with
Vh0 than there is of T1 because of the small value of Pr.
Thus the maximum values of the vertical perturbation

velocity are at a larger and smaller value of H than those

of T1, near r ¼ 0 and 1, respectively. For Tm P 8000, DU
is positive for all values of r, and is increasing as Tm is

increased. This means that the maximum value of T1 is at
a larger value of H than that of vz1. The origin of this

difference in phase shift is illustrated with some of the

important terms in the perturbation version of Eq. (3),

Vh0
r

oT1
oH

� Pr�1r2T1 ¼ � oT0
oz

vz1: ð16Þ

The term on the right side of this equation is the

primary source of perturbation temperature, namely a

vertical perturbation velocity carries hotter fluid upward

or colder fluid downward. The phase shift depends on

the balance between the azimuthal convection term

and the conduction term. Since the magnitude of Vh0
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increases as Tm is increased, the ratio of the azimuthal

convection to conduction is characterized by T p
mPr,

where p is a power which varies from 1.0 for small values

of Tm to 0.67 for larger values of Tm [8]. For T p
m Pr � 1,

the azimuthal convection is much smaller than conduc-

tion, so that T1 is in phase with vz1 and DU ¼ 0. For

T p
mPr � 1, conduction is much smaller than the azi-

muthal convection, and there is a phase shift of p=2
between T1 and vz1 Since oT0=oz < 0, the direction of the

phase shift depends on the sign of Vh0 when azimuthal

convection dominates. For Vh0 > 0, DU ¼ p=2, i.e., if vz1
varies as cosH, then T1 varies as sinH. If Vh0 < 0,

DU ¼ �p=2. In Fig. 5, DU is positive and is approaching

p=2 for all values of r as Tm is increased. There are two

reasons why DU does not change signs near r ¼ 1. First,

for Pr ¼ 0:0286, kI is much smaller than X0, so that the

region near r ¼ 1 where Vh0 < 0 is very small. Second,

thermal conduction is certainly not small for

Pr ¼ 0:0286, so that the dominance of Vh0 > 0 for most

values of r is carried by conduction to the small region

near r ¼ 1 where Vh0 < 0. On the other hand, for

Pr ¼ 1:0, Tm ¼ 14; 000, m ¼ 1 and Racr ¼ 14; 539:4, DU
at z ¼ 0 decreases from 1.22 at r ¼ 0 to 0.75 at r ¼ 0:62,
and then it plunges rather abruptly to )0.35 at r ¼ 0:7,
remaining nearly constant to r ¼ 1. First, for Pr ¼ 1:0,
kI is a little more than 0.5X0, so that Vh0 < 0 for a much

larger range near r ¼ 1. Second, with Pr ¼ 1:0, thermal

conduction is weak enough that it cannot overwhelm the

large radial temperature gradient produced by the azi-

muthal convection. Of course this discussion of the

origin of the difference in phase shifts is very rough be-

cause many of the terms in the perturbation version of

Eq. (3) which are not included in our discussion Eq. (16)

are in fact quite important, particularly for Pr ¼ 1:0
when the base-state temperature is far from that for pure

conduction.

We believe that there is a correlation between (1) the

DU arising from the convection of the perturbation

variables with the azimuthal base-flow velocity driven by

the RMF, and (2) the increase of Racr when either Tm or

Pr are increased in Fig. 2. For the Rayleigh–B�eenard
instability for Tm ¼ 0, DU ¼ 0, so that vz1 is positive

wherever T1 is positive and vz1 is negative wherever T1 is
negative. Wherever there is upward flow, convective heat

transfer produces an increase in temperature, so that

buoyancy supports the upward flow, and wherever there

is downward flow, convective heat transfer produces a

decrease in temperature, so that buoyancy supports

downward flow. Therefore convective heat transfer and

buoyancy reinforce each other over the entire cross-

section of the cylinder. When DU 6¼ 0, vz1 and T1 have

the same signs and thus reinforce each other for

DH ¼ 2p� 2jDUj, but vz1 and T1 have opposite signs and
thus oppose each other for DH ¼ 2jDUj. Clearly as

jDUj ! p=2, both the region of reinforcement and the

region of opposition approach DH ¼ p, which probably
means that Racr ! 1. As jDUj increases, the tempera-

ture difference between the top and bottom walls must

be increased so that reinforcement for DH ¼ 2p� 2jDUj
can overcome the opposition for DH ¼ 2jDUj to pro-

duce the instability. Since DU increases as T p
mPr, an in-

crease of either Pr or Tm leads to an increase of Racr. For
the infinitely long cylinder, Volz and Mazuruk [12] also

found that Racr increased as either Tm or Pr was in-

creased.

For Pr ¼ 0:0286, a key element in our hypothesis

about a nonlinear coupling between the m ¼ 0 and 2

modes is the fact that the frequency of the m ¼ 0 mode is

roughly half that of the m ¼ 2 mode. For mP 1, the

periodicity is the result of the rotation of a spatially

constant perturbation pattern with the angular velocity

kI=m, i.e., the perturbation flow is steady in a rotating

reference frame. The values of the perturbation variables

indicate that the periodicity of the m ¼ 0 mode arises

from a coupling between the vh1 produced by the radial

convection of the base-flow azimuthal velocity and the

vr1 produced by the centrifugal force due to the azi-

muthal velocity. The contour plots of w1R and w1I for

Pr ¼ 0:0286, Tm ¼ 50; 000, m ¼ 0 and Racr ¼ 6466 are

presented in Fig. 6. From Eq. (9) for kR ¼ m ¼ 0,

w1 ¼ w1R at t ¼ 0, w1 ¼ �w1I at t ¼ p=2kI, w1 ¼ �w1R at

t ¼ p=kI and w1 ¼ w1I at t ¼ 3p=2kI. Fig. 6a indicates

that the counterclockwise meridional circulation at t ¼ 0

consists of axially upward flow for r > 0:6, radially in-

ward flow for z > 0, axially downward flow for r < 0:6
and radially outward flow for z < 0. At t ¼ 0, the values

of vh1 are relatively small and positive for z > 0. The

radially inward flow for z > 0 convects the base-flow

azimuthal velocity, as represented by vr1oðrvh0Þ=or,
causing the values of vh1 for z > 0 to increase during the

quarter period 06 t6 p=2kI. Thus at t ¼ p=2kI, vh1 is

positive for z > 0 and has a maximum value of 9.87 at

r ¼ 0:3 and z ¼ 0:87. During this quarter period, the

centrifugal force, as represented by 2vh1vh0=r, has in-

creased to positive values for z > 0 and has changed the

meridional circulation, as reflected by w1 ¼ �w1I at

t ¼ p=2kI, with the contours of w1I in Fig. 6b. The

counterclockwise flow for t ¼ 0 has been pushed up to

roughly z > 0:65 and there is now a clockwise circula-

tion for jzj < 0:65 with axially upward flow for r < 0:7
and axially downward flow for r > 0:7. From both

meridional circulations, there is radially outward for for

0 < z < 0:87. The associated convection of base-flow

azimuthal velocity begins to decrease the positive values

of vh1 for z > 0. By t ¼ p=kI, vh1 has small negative

values over most of the cross-section for z > 0, and there

is clockwise meridional flow over the entire cross-sec-

tion. During the quarter period p=kI 6 t6 3p=2kI the

radially outward flow for z > 0 convects the base-flow

azimuthal velocity, producing large negative values of

vh1 at t ¼ 3p=2kI for z > 0. The associated centrifugal

force pushes the clockwise meridional circulation up to



Fig. 6. Contour plots for the real and imaginary parts of

the stream function for the perturbation meridional circulation

for Pr ¼ 0:0286, Tm ¼ 50; 000, m ¼ 0 and Racr ¼ 6466 (a)

w1R ¼ 0:1k, for k ¼ 1 to 8. (b) w1Ik, for k ¼ �4 to 4.
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z > 0:65 and creates a counterclockwise circulation for

jzj < 0:65. During the quarter period, 3p=2kI 6 t6
2p=kI, the values of vh1 increase from their large negative

values to small positive values and the counterclockwise

circulation spread over the entire cross-section. While

the periodicity of the m ¼ 0 mode does not arise from

convection with vh0, its frequency is still correlated with

vh0 since vh0 and oðrvh0Þ=or are the coefficients in the key

terms for the centrifugal force and radial convection of

base-flow angular momentum. For our typical case,

kI ¼ 364:92 while the maximum value of vh0 is 455.37.
4. Conclusions

A rotating magnetic field can lead to a large in-

crease in the critical Rayleigh number Racr for the

initial transition from steady to periodic flow for the

Rayleigh–B�eenard instability. The value of Racr in-

creases as either the magnetic Taylor number Tm or the

Prandtl number Pr is increased. For liquid gallium, the

linear stability predictions for the m ¼ 1 mode agree

very well with previously published experimental mea-

surements, but the experimental values of Racr for the

m ¼ 2 mode are below the predictions of the linear

stability analysis. There are characteristics of the m ¼ 0

and 2 modes which support a hypothesis that this

difference may arise from a nonlinear coupling of these

two modes. For m ¼ 1, the perturbation pattern of the

critical mode rotates with an angular velocity which is

less than that of the base-flow, where this difference

arises from a competition between conductive and

convective heat transfer for the perturbation tempera-

ture. As either Pr or Tm is increased, the azimuthal

phase shift between the perturbation temperature and

the axial perturbation velocity increases, and this

increasing phase shift appears to be one reason for the

increase in Racr.
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